fbpx

Développement et factorisation

Niveau de cet exercice : 2

Énoncé

u003cpu003eDéterminer le domaine définition des fonctions, dans le tableau ci-dessousu003c/pu003enu003cpu003eu003cimg class=u0022alignnone size-full wp-image-9976u0022 src=u0022https://kiffelesmaths.com/wp-content/uploads/2020/06/domaine-de-définitions.pngu0022 alt=u0022domaine de définitionsu0022 width=u0022891u0022 height=u0022146u0022 /u003eu003c/pu003e

Correction

u003cpu003eu003cimg class=u0022alignnone size-full wp-image-9977u0022 src=u0022https://kiffelesmaths.com/wp-content/uploads/2020/06/tableau-de-signe-cube-moins-carree-correction.pngu0022 alt=u0022tableau de signe cube moins carree – correctionu0022 width=u0022888u0022 height=u0022145u0022 /u003eu003c/pu003e


Niveau de cet exercice : 3

Énoncé

u003cpu003eSoit un u003cbu003ecylindreu003c/bu003e de hauteur u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022h%3D5u0022 /u003e et de rayon u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e.u003c/pu003enu003cpu003eu003cimg class=u0022alignnone size-full wp-image-9980u0022 src=u0022https://kiffelesmaths.com/wp-content/uploads/2020/06/cylindre.pngu0022 alt=u0022cylindreu0022 width=u0022313u0022 height=u0022479u0022 /u003eu003c/pu003enu003cpu003e1- Exprimer u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022S(x)u0022 /u003e le volume du cylindre en fonction de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e.u003c/pu003enu003cpu003e2- Calculer u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022S(2)u0022 /u003e et u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022S(3)u0022 /u003e.u003c/pu003enu003cpu003e3 – Déterminer la valeur de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e pour que le volume du cylindre soit u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022180%5Cpiu0022 /u003e.u003c/pu003e

Correction

u003cpu003e1- u003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022S(x)%3D%5Cpi%5Ctimes%20x%5E2%5Ctimes%20h%3D5%5Cpi%20x%5E2u0022 /u003eu003c/pu003enu003cpu003e2- u003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022×3+nobwQOBTaoKGpjYH9gLeBnwNmxVhkgqwEHRmDd3Fvy0R7wLMq3InBDyL4OsDZwBPC90ZZfaJ7WeXYNwNNW1g6nAVfUONRXgfuB987CCfXLQ4A3Af8KWQ8H/lnIol3XBD4PvBb4OXBw1EhNrGcgapZfuvm5gCjxmiIDLAtcFU5k1nATlaoDOf+oYpHVgSMBs8jvgXcCnwPOA95aUfh7Ing+1ELXxm0HFSg9UMYcUoO9Q4mLROcl7PFB4O2hhI+G0x8QgFXq4c2AFPgDs1Bf6JdLAM8C/gS8LGynn+4CJLC+MEBYfzsTMMOdBewAfL+PE1UzhlEmWmwSWaNc67uxmVnE4ZxvBOreGd8ZLGaQlwBmDRXrHldHoO0cgmf0Pj+Czfl/7CP4iHMzY7iMsvwoKJ1o2AtZRpRjNh9PYNNhDgPuBZYB/gJIdbcBLgkBDRQzqtTa4JAh7DtB4bcN5D8f+EzsK+Bao/4AeHVRC70+GgQZ1DYPDJhX9AnoMjD8+0uACGI6qhbSckvTkpkja4tXRgCkM7nGtyNSpUmJyCKRFMXsslOlRnH+CcA5E1S08psx7gO+0HNfUWoL4Ms1QSS6eW6L1Zkcrq/DDuLQnm97wNrwlzVCOCefLYHwYmBrYK+gJKKttFrwkw08JXQ3FHcfUiGe81OA4CyT0d9sAPwuqNTTY90/h38aNDneHTT+GcBdXfevBobGNq1aEKuYH4fyjD4VmVHo32YL58nVy6Hjy91FYYMps4sB5QEz4vOZDJ6D+kR01wPWzMuM8Vvg9jibQKDx2zKGZz89glwdlPMNiv/WZNyqKK7zrtBV3XHUresNGmbfL0bNVzqpZ/t4gJsO0uTA1ow2WjxPcnUBbZ9ovni+tGEpQzrniGbo9fjHoha0XnUo93+CWhkkBodNgqqPyVxkLDaTPI96fwEgNawb86tUysklcruRqXb3cKBcSL73SHxvl6ptyPMMmBSunO/aUimdpInbb9myiem/HL8AftMSGLaM3xB9egN0D8DU24aGKte0fkZceBkcBoVp/fjIJk3iqj/1bMYV0TVyFaRcU6M2yaK9zPCvinmuId35JLD+EECjHGaZJaMRYUYd1KBpAw/PPk57DdLlhwMYLosMZzNHXdYFxvuAkyKTHgs8ADy7qD3UoefSZy6sHlqD6yimVhW7bkhk50YjppFc0JpAZ2+jQBlsZiPTWtX5XcNDul+TE0gdRAgR1KD0b/+te+bX4aiDlJoZQ5SUXzvsytwEiMQGctvQiUQiM82lwLeAF0cnpOlZ9xb1pCxfC7BYJSidWdWMen3oqUsTwOBxLbm/hegaHQKqTj4zlABhM8SGSpcAqFtrnPaq7qGfymbUt3bQBzIzlBTe5/TlZCvSZ+vI14WO7b5+Imz271jrsTPX3WPkHcTLQ1EW5aKrHQGHQWJHarO436hTjkKbcaRcpvdBhnYNHcRXDupoQ5uTDvN79c4iOXcWc21Zwz19RqohdZTT25ruMjSiRlEGHfCi4M/qV+RKPXdZqzT+dREgXQKqunY6ll1Ha75h1ugq7yjz1LlF94vikz6zKnBbQ8bwXALec4EbAwitb58XzQT90yL+sZGBYXHlOzC2t6ojEX/TQEh/t5skP7dI87lBw6CwGPIQdjCqdUo+4xoiXkZ+ndLqgrhJyU0XQCKaaTOzQwaGWUS+2iUwLMLNFvb/74n7gD4oK/0ys8l5lwqeL83qAxDq5URAKiGQmeV/0tPzfM3Dxoho6z1GjlGCY5z2SnmyaWJXzEBWT1n7CqxSvzoqVXbZXE+WIoV/W9TJ2m1B/ZvCGxDyUtG7algLMwtyjZecXSf2ksXiTYpUHRrcVGc/2Wyggj2I+5R3Bz5n+tcYbQ5xbU9jy/9PqXnGCypR0S6HFCRBQjkNeJ2sLTCyznoL4MWX9zQPx71NV4eyOH5HdFqSI4t8BkuXoVN4DoFNOTS++rbPb/OjyzAopMqlfdWdH6nisGOc9lIGz2p3UzDKO7YEs7y5T/qsT+WQFtptLV9j8TmZgfWkL0ZKIc0c0voFzuAfVvwuIF0qHcK04+WJqFpe7CiItMGgcNNyuKnfm9bNGOkkXs64ebUr9ZFoxdlOa0JKg7EPGrtv3XzriW8Gwmev3ha1Z/WexkKtybk9v3RH/VjrpOFEK98n0uHbZFVPOp5UU50klakiW51jZqawiLSDmPIasHbX5NFtmeOp4SA6XKkv32jwdR3p3rBjnPZSBp1Wu5jVyu6oNaLIr74FCemQNVvq34xuTexbDfmcLMhCXH+0hWtg2Bh6ac7Jd09EbLs6KtQC5R+B5Brsp9HaKp1Wo4qQdjCqju7z1e9SuaYtbyTLwHT+ynHwrkg7rLHyOY0mdZDb28IzaKV723XIXPkWgC9O2kevgoJOqoJdq2kkRfVfdSkwqH8R33qlbWhMje3lV1VvWQNW31+rrimoCYiDhnXTX9uEmNDvFtmCiHSpOgQyGYCB4CWeTRCd3BpYNiAAGvjZPdXn7WRJl9WTurMb6dsaC+7vnKSTXx5tPjOHk3xJzP6+9YFcfBCtMFJdOBdPgTVYeeFXBoHUpUQh9zbzSHl8tXmSQxQREHQuX4iTDnmBmRmgSRZTuYXboKEz2mFrewVBHZthfC0mX7HxsvHBBmAp97N7qBPUgUnWGk11Vt3ttX6h3ScFVG12FzzrhrKWQKxefJ9K+i/omfn049SDPmeQ2KnyN4eFvB1T7f93vxhUIPmg3zdREZ/VoeRpprGunLh6OI3nfYCC+UrCpEdmzNx3rjjCpPXwRNsvu6qeayibDtM5KDOAEeawF9x3JCo9VNwl9F1jOn+qgRnRwCiBoUDSBi9MvOfwUqrPsG9sF8zPUFHdZ7Pp3KkG+mhg1MBwr3xnpa3QK+WSB/rOvC3GSf+/GH30M527iGpgHIGh6myP2f9va1Gmmr3PkAfWFbCLqDmmx54rGhhXYMyV80zlmGpgLBp4FB8jUj1NRyUVAAAAAElFTkSuQmCCu0022 data-mlang=u0022latexu0022 data-equation=u0022S(2)%3D5%5Ctimes%20%5Cpi%5Ctimes%202%5E2%3D20%5Cpiu0022 /u003eu003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022S(3)%3D5%5Ctimes%20%5Cpi%5Ctimes%203%5E2%3D45%5Cpiu0022 /u003eu003c/pu003enu003cpu003e3-u003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022S(x)%3D180%5Cpiu0022 /u003e équivalent à u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u00225%5Cpi%20x%5E2%3D180%5Cpiu0022 /u003eu003c/pu003enu003cp style=u0022padding-left: 160px;u0022u003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022x%5E2%3D%5Cfrac%7B180%5Cpi%7D%7B5%5Cpi%7D%20%3D36u0022 /u003eu003c/pu003enu003cp style=u0022padding-left: 160px;u0022u003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022x%3D%5Csqrt%7B36%7D%20%3D6u0022 /u003eu003c/pu003enu003cpu003edonc la valeur de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e pour que le volume du cylindre est u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022180%5Cpiu0022 /u003e est u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u00226u0022 /u003e.u003c/pu003e


Niveau de cet exercice : 2

Énoncé

u003cpu003eSoit u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e une fonction telle que u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(x)%3D%5Cfrac%7B%E2%88%923%7D%7Bx%7Du0022 /u003e.u003c/pu003enu003colu003enu003cliu003eDétermineru003cspan style=u0022font-size: 16.66px; white-space: nowrap;u0022u003e u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022D_fu0022 /u003eu003c/spanu003e et calculer u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f%5Cleft%20(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright%20)%20%2C%20f(1)%2Cf(3)u0022 /u003e et u003cspan id=u0022MathJax-Element-36-Frameu0022 class=u0022mjx-chtml MathJax_CHTMLu0022 style=u0022box-sizing: inherit; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.66px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;u0022 tabindex=u00220u0022 role=u0022presentationu0022 data-mathml=u0022u0026lt;math xmlns=u0026quot;http://www.w3.org/1998/Math/MathMLu0026quot;u0026gt;u0026lt;miu0026gt;fu0026lt;/miu0026gt;u0026lt;mo stretchy=u0026quot;falseu0026quot;u0026gt;(u0026lt;/mou0026gt;u0026lt;mnu0026gt;6u0026lt;/mnu0026gt;u0026lt;mo stretchy=u0026quot;falseu0026quot;u0026gt;)u0026lt;/mou0026gt;u0026lt;/mathu0026gt;u0022u003eu003cspan id=u0022MJXc-Node-248u0022 class=u0022mjx-mathu0022 aria-hidden=u0022trueu0022u003eu003cspan id=u0022MJXc-Node-249u0022 class=u0022mjx-mrowu0022u003eu003cspan id=u0022MJXc-Node-250u0022 class=u0022mjx-miu0022u003eu003cspan class=u0022mjx-char MJXc-TeX-math-Iu0022u003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(6)u0022 /u003eu003c/spanu003eu003c/spanu003eu003c/spanu003eu003c/spanu003eu003c/spanu003e.u003c/liu003enu003cliu003eDonner le tableau de variation de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e.u003c/liu003enu003cliu003eDéterminer la parité de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e.u003c/liu003enu003cliu003eTracer la courbe de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e.u003c/liu003enu003c/olu003e

Correction

u003cpu003e1- u003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022D_f%3D%5Cmathbb%7BR%7D%5E*%3D%5D-%5Cinfty%3B0%5B%5Ccup%5D0%3B%2B%5Cinfty%5Bu0022 /u003eu003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(%5Cfrac%7B1%7D%7B2%7D%20)%3D%5Cfrac%7B%E2%88%923%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%3D-3%5Ctimes%202%3D6u0022 /u003eu003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(1)%3D%5Cfrac%7B%E2%88%923%7D%7B1%7D%20%3D-3u0022 /u003eu003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(3)%3D%5Cfrac%7B%E2%88%923%7D%7B3%7D%20%3D-1u0022 /u003eu003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(6)%3D%5Cfrac%7B%E2%88%923%7D%7B6%7D%20%3D%5Cfrac%7B%E2%88%921%7D%7B2%7Du0022 /u003eu003c/pu003enu003chr /u003enu003cpu003e2-u003c/pu003enu003cpu003eLa fonction u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022x%5Cmapsto%20%5Cfrac%7B1%7D%7Bx%7Du0022 /u003e est décroissante sur u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5D-%5Cinfty%20%3B%200%5Bu0022 /u003e et sur u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5D0%3B%2B%5Cinfty%5Bu0022 /u003eu003c/pu003enu003cpu003ealors pour deux éléments u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e et u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022yu0022 /u003e de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5D-%5Cinfty%20%3B%200%5Bu0022 /u003e tels que u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022x%3C%20yu0022 /u003e on a u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5Cfrac%7B1%7D%7Bx%7D%20%3E%20%5Cfrac%7B1%7D%7By%7Du0022 /u003eu003c/pu003enu003cpu003ealors u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5Cfrac%7B-3%7D%7Bx%7D%20%3C%20%20%5Cfrac%7B-3%7D%7By%7Du0022 /u003e c’est à dire u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(x)%3C%20f(y)u0022 /u003e donc u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e est croissante.u003c/pu003enu003cpu003eet pour deux éléments u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022xu0022 /u003e et u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022yu0022 /u003e de u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5D0%3B%2B%5Cinfty%20%5Bu0022 /u003e tels que u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022x%3C%20yu0022 /u003e on a u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5Cfrac%7B1%7D%7Bx%7D%20%3E%20%5Cfrac%7B1%7D%7By%7Du0022 /u003eu003c/pu003enu003cpu003ealors u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5Cfrac%7B-3%7D%7Bx%7D%20%3C%20%20%5Cfrac%7B-3%7D%7By%7Du0022 /u003e c’est à dire u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(x)%3C%20f(y)u0022 /u003e donc u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e est croissante.u003c/pu003enu003cpu003eu003cimg class=u0022alignnone size-full wp-image-9987u0022 src=u0022https://kiffelesmaths.com/wp-content/uploads/2020/06/tableau-de-variation-inverse.pngu0022 alt=u0022u0022 width=u0022743u0022 height=u0022237u0022 /u003eu003c/pu003enu003chr /u003enu003cpu003e3- u003c/pu003enu003cpu003eu003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e est une fonction définie sur u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022%5Cmathbb%7BR%7D%5E*u0022 /u003e de centre u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u00220u0022 /u003e et u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022f(-x)%3D%5Cfrac%7B-3%7D%7B-x%7D%20%3D-%5Cleft%20(%20%5Cfrac%7B-3%7D%7Bx%7D%20%5Cright%20)%20%3D-f(x)u0022 /u003eu003c/pu003enu003cpu003edonc u003cimg class=u0022fm-editor-equationu0022 src=u0022 data-mlang=u0022latexu0022 data-equation=u0022fu0022 /u003e est une fonction impaire.u003c/pu003enu003chr /u003enu003cpu003e4- u003c/pu003enu003cpu003eu003cimg class=u0022alignnone size-full wp-image-9988u0022 src=u0022https://kiffelesmaths.com/wp-content/uploads/2020/06/courbe-de-la-fonction-inverse.pngu0022 alt=u0022u0022 width=u0022685u0022 height=u0022526u0022 /u003eu003c/pu003e


Print Friendly, PDF & Email